Electrochemical Performance of Carbon Nanotube Based Supercapacitor

نویسندگان

  • Jafar Khan Kasi
  • Ajab Khan Kasi
چکیده

Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor. Keywords—Carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor

We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...

متن کامل

High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets

By using highly aligned carbon nanotube (CNT) sheets of excellent optical transmittance and mechanical stretchability as both the current collector and active electrode, high-performance transparent and stretchable all-solid supercapacitors with a good stability were developed. A transmittance up to 75% at the wavelength of 550 nm was achieved for a supercapacitor made from a cross-over assembl...

متن کامل

Performance of polyaniline/manganese oxide-MWCNT Nanocomposites as Supercapacitors

Composite electrodes of polyaniline/MnO2-Multi walled carbon nanotube (PANI/MnO2-MWCNT), MnO2-MWCNT nanocomposites and MWCNT was produced by the in situ direct coating approach. The supercapacitor performance of the nanocomposites was studied by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of electrodes were also investig...

متن کامل

Carbon-based Fibrous Edlc Capacitors and Supercapacitors

This paper investigates electrochemical double layer capacitors (EDLCs) including two alternative types of carbon-based fibrous electrodes, a carbon fibre woven fabric (CWF) and a multiwall carbon nanotube (CNT) electrode, as well as hybrid CWFCNT electrodes. Two types of separator membranes were also considered. An organic gel electrolyte PEO-LiCIO4-EC-THF was used to maintain a high working v...

متن کامل

Preparation and Characterization of Carbon Nanotubes for Supercapacitor Applications

Recent advancements in nanotechnology have proposed the Carbon nanotubes as electrode material for the Supercapacitor applications due to their unique properties. Synthesis of Carbon nanotube in Catalytic Chemical vapor deposition (CCVD) is the easiest and economic way of production in a larger scale. The synthesized MWCNTs were characterized by X – ray diffraction (XRD). The morphological char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015